数学家Paul Erds提出的一个有趣问题
1941年,数学家Paul Erds在American Mathematical Monthly上提出了这样一个问题:
如果两个正方形S1和S2包容于单位正方形中,它们没有公共点,则它们的边长之和与单位长度1是什么关系?
小明回到家里发现家里很乱,估计是进小偷了。小明最担心的就是书房里的电脑,呼呼,还好电脑还在。小明发现了书架上有几本新书分别是:《儿子》《孙子和孙女》《我们快结婚吧》《321跑!》《我的歌声里》《我们都有两面》《我们,你们,他们?有秘密》《死神来了与贞子鬼》
请问以下推理最不可能正确的是?
这是一道博弈论的题目,内容是这样的
假设现在有100个你在接受这项测试,而你们都是唯利是图的,没有利益的测试你们都不会做,所以我为100个你准备了100元的奖金。你们需要做的事情,就是在1-100里取一个数,哪个取数最接近所有人取数平均数的2/3,哪个就是优胜者,将得到100元奖金所取数的差额作为奖励。如果有多于一人获得奖励的话,平分奖金。无论是平均数2/3的取整还是奖金平分的取整,这个游戏的原则都不是四舍五入,而是向下取整,取数的取整不能小于1
举个例子,比如现在三个你在进行游戏,分别是ABC.写下的数字是25 25 75。那么三个人的平均数为41.6666666取整为41。41的2/3是27.33333,取整为27。那么最接近27的就是优胜者。AB取数25都是优胜者,他们得到的奖金为(100-25)/2=37.5,再取整为37元
那么现在,100个你做这个测试你是其中一个,你的取数是多少?