×
通过社交网站直接登录
×
条@我的评论,查看@我
条新私信,查看私信
条新评论,查看评论
位新粉丝 查看粉丝
数学天地 趣味数学 开放题 计算 解决
于 2012-01-29 21:48提供
较难
(18)

取一枚较长的缝衣针或者是大头针,截掉两端,留下中间粗细均匀的20毫米长的一段。

再取一张白纸,在上面画许多距离为40毫米的平行线,并在纸下面垫一层柔软的东西,防止针的反弹。

然后把针拿到某一个高度,再让它自由落到纸上,这时,针和纸上的平行线只可能产生两种情况:相交(包括针的一端正好落到一根线上),或者不相交。

重复这个动作把每一次相交和不相交的情况记录下来,投掷的次数越多越好,最后把总的次数(相交和不相交的次数之和)除以相交的次数,将得到圆周率\( \pi  \)的近似值。投掷次数越多,得到的\( \pi  \)值越精确。

为什么会这样呢?

提示:
1)虽然是概率,但毕竟是圆周率,肯定跟圆有关系的。
2)两个数字也是突破口。
3)真人真事:瑞士天文学家服尔夫投掷了5000次,得到\( \pi =3.159 \)

4)理论相交次数与长度成正比,而形状没有关系

标签: 次数
答案:
解析:
4
收藏
登录后才能发表评论 登录 | 立即注册