你在數學課上學了不少幾何圖形的知識,掌握了不少平面圖形的求面積公式。但是有許多組合面積的計算,單靠這些知識是遠遠不夠的,它更需要對組合圖形的觀察能力。下面就是一道考查你的觀察能力的題目。試試看,你能很快做出來嗎?已知圖內各圓相切,小圓半徑為1,求陰影部分的面積。
A、1π/3
B、1π/2
C、2π/3
D、5π/6
錯視圖老司機們,來看看這道題。下面哪圖形的面積比較大?
如圖所示,左側圖形由四段全等的弧所構成,每段弧都是一個半徑為5的圓之四分之一圓周;而右側圖形則是一個邊長為7的正方形。哪一圖形面積更大?
如圖所示,假設每個小正方形的邊長為1個單位,那麼下邊4個圖形中哪個圖形的面積最大?
周長相等的圓,正方形,長方形和等邊三角形中,哪個圖形面積最大?
在平面直角坐標系內給出一個面積為2的凸n邊形
現將其每個頂點(xi,yi)的坐標變成(xi-yi,xi+yi) (1<=i<=n)
求得到的新圖形的面積
新浪微博 70,000+
移動應用