將正整數1至100按任意順序分別寫在正100邊形的各個頂點上。允許交換任何兩個差為1的數的位置。在經過若干次這種操作之後,每個數都移到了順時針方向的相鄰頂點上。外接圓的直徑的兩個端點相互稱為對徑點。是否必有某一時刻,有兩個處於對徑點上的數交換位置。
A、是
B、否
1992聖彼得堡數學奧林匹克(初中)
梯形中有一條對角線的長度等於兩底的長度之和,且兩條對角線的夾角等於60°。該梯形是否為等腰梯形。
某人收集硬幣。今知他所收集的所有硬幣的直徑都不大於10cm。他將其所有硬幣貼在一張尺寸為30cm×70cm的硬紙板上。他是否可以把它們都換到另一張尺寸為40cm×60cm的硬紙板上。
1995聖彼得堡數學奧林匹克(初中)
十進位五位數A的各位數字都是2或3,而十進位五位數B的各位數字都是3或4。試問:乘積AB的各位數字能否全都是2。
1994聖彼得堡數學奧林匹克(初中)
兩人輪流在101×101的方格表中擺放棋子,每人每次擺放1枚棋子。先開始者可以把棋子放在任何一個這樣的空格中:該格所在的行與列中已經擺放的棋子總數為偶數;后開始者則可以把棋子放在任何一個這樣的空格中:該格所在的行與列中已經擺放的棋子總數為奇數。誰不能再擺放棋子,就算誰輸。試問:誰有取勝策略?
有三堆石子,允許往其中任何一堆中添加石子,所添加的石子粒數必須等於此時其餘兩堆中的石子粒數之和;也可以在能夠做到時,從其中任何一堆中取出石子,取出的石子粒數等於此時其餘兩堆石子中的石子粒數之和(例如,若在三堆石子中分別有4、7和12粒石子,則可以往4粒石子的堆中添加7+12=19粒石子;也可以自12粒石子的堆中取出4+7=11粒石子)。現設三堆石子中原來分別有1993、199和18粒石子。問:能否通過若干次操作,使得其中一堆變空?
新浪微博 70,000+
移動應用