外星人为了测试地球上生物的智力水平,抓住了一群聪明人。这些聪明人被分开关在外星人舰队的牢房里,他们无法交流,也不知道总共有多少人。外星人舰长要求其中一位聪明人写一封邮件交给他,然后他会转发给所有的聪明人。
从第二天起,舰长要求每个聪明人必须写下一个0或者一个1。收到所有人写的信息后,舰长在心中建立一个模型:将你们排成一个圆圈,顺序可以每天由舰长任意变化。排好你们的顺序之后,舰长把每个人写下的那一位数字分别交给圆中位于这个人顺时针方向的下一个人。
如果在某天,有一位聪明人能够正确答对这群聪明人的总数,外星人会释放所有的聪明人;当然如果答错的话,这些人都会因为失去价值而被处死。考虑到地球人的寿命实在太短,外星人给每位聪明人都喂下了长生药,他们的生命足够长。
请问:是否存在一个方案,能够保证这些聪明人被释放呢?如果存在,请提供这个方案。
n的倍数有以下特征,请问数学上怎么给出证明?
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。
求助高等数学题库提供各类高等数学题目及答案。高等数学试题是适合大学及其以上学历的人解答的数学题,对巩固各类数学知识点有极大帮助。
如果你有其他有关高等数学的好题目,欢迎与我们分享 请发布高等数学的智力题