有64个囚犯被国王抓住,国王给他们一次生存的机会,一个房间内有6个灯且均灭,只能控制开闭,任何记号都是不被允许的,且不允许接触除了灯开关以外的任何东西,且每个囚犯只能改变一个灯的状态。
这64个囚犯被以一定的顺序(由国王指定)要求进入房间内并改变灯的状态,且囚犯不知道自己是第几个进入的。如果有囚犯确认自己是最后一个进入的并且确实是最后一个则所有囚犯被释放,否则所有囚犯被处死。
现在他们被给予10分钟时间来讨论对策,请问如何保证所有囚犯活下来?
如果是100个囚犯,则讨论出的最佳对策的成功率为多少?
一个狱卒负责看守人数众多的囚犯。吃饭时,他得安排他们分别坐在一些桌子旁边。入座的规则如下:1. 每张桌子坐着的囚犯人数均相同;2. 每张桌子所坐的的人数都是奇数。
在囚犯入座后,狱卒发现:每张桌子坐3个人,就会多出2个人;每张桌子坐5个人,就会多出4个人;每张桌子坐7个人,就会多出6个人;每张桌子坐9个人,就会多出8个人;但当每张桌子坐11个人时,就没有人多出来。那么,实际上一共有多少个囚犯?
(1)有100 个囚犯分别关在 100 间牢房里。牢房外有一个空荡荡的房间,房间里有一个由开关控制的灯泡。初始时,灯是关着的。看守每次随便选择一名囚犯进入房间,但保证每个囚犯都会被选中无穷多次。如果在某一时刻,有囚犯成功断定出所有人都进过这个房间了,所有囚犯都能释放。游戏开始前,所有囚犯可以聚在一起商量对策,但在此之后它们唯一可用来交流的工具就只有那个灯泡。他们应该设计一个怎样的协议呢?
(2) 大家都知道房间里的灯泡一开始是不亮的。如果灯泡的初始状态并不确定,问题有解吗?