小K的神奇瓶塞
小K買了三個瓶子,瓶塞形狀如下圖所示,具小K所說,他用一個瓶塞就能嚴絲合縫的塞上三個瓶子。
Question:小K說的是真的嗎?
A、真的,確實有這樣的瓶塞
B、假的,沒有這樣的瓶塞
小睿用若干個相同的正方形木塊連接成一個幾何體,這個幾何體正面看如左圖,從上面看如右圖。那麼搭建這個幾何體至少用了多少木塊?(方塊與方塊之間必須相連,至少兩條楞接觸)
A、26
B、27
C、23
D、22
如圖,兩個直徑分別為36cm和16cm的球,靠在一起放在同一水平面上,組成如圖所示的幾何體,則該幾何體的俯視圖的圓心距是( )cm.
A、10
B、24
C、26
D、52
在古書《孫子算經》中有一道題:「今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何。」
A、23
B、29
C、21
D、15
如圖,有一個等腰直角三角形ABC,過A點有兩條線段AM,AN交於BC,其中∠MAN為45°。求BM,MN,CN間的數量關係。
A、BM+CN=MN
B、BM+2MN=CN
C、BM^2+CN^2=MN^2
D、BM^2+MN^2=CN^2
E、MN^2-CN^2=BM
如圖所示(此圖僅為示意),現有各棱長均相等的一個正三稜錐和一個正四稜錐,當將它們的一個側面完全重合地粘貼在一起后,新形成的幾何體有幾個外露面?
A、5
B、6
C、7
D、8
圖中有多少個三角形?
A、7
B、12
C、15
D、17
小明用若干個大小相同的正方體木塊堆成一個幾何體,這個幾何體從正面看如下圖左,從上面看如下圖右.那麼這個幾何體至少用了______塊木塊(圖中不包括顏色信息)
A、25
B、26
D、50
兩相同的正四稜錐組成如圖所示的幾何體,可放棱長為1的正方體內,使正四稜錐的底面ABCD與正方體的某一個平面平行,且各頂點均在正方體的面上,則這樣幾何體體積的可能值有( )
A、1
B、2
C、3
D、4
E、無窮多
看三視圖 求該幾何體體積
A、4π/3
B、π/3
C、π
D、2π/3
下列哪種幾何體不可能存在中心?
A、二十面體
B、六十四面體
C、四面體
D、八面體
E、十二面體
如圖是三視圖,該幾何體體積是多少?
A、20/3
B、16/3
C、13/3
D、22/3
如圖,點P為△ABC邊BC上的一點,且2BP=CP,∠ABC=45°,∠APC=60°,求∠ACB的度數
A、60°
B、90°
C、75°
D、35°
E、45°
A、七步
B、六步
C、五步
D、四步
A、18°或54°
B、36°或72°
C、54°
D、18°或72°
下面是《九章算數》中一道題,看看現代的你是否能讀懂並做出
今有貸人千錢,月息三十。今有貸人七百五十錢,九日歸之,問息幾何?
A、2.5
B、6.75
C、22.5
【六年級 幾何問題】
下圖是一塊長方形草地,長方形的長是16,寬是10.中間有兩條道路,一條是長方形,一條是平行四邊形,那麼有草部分的面積(陰影部分)有多大?
A、110
B、112
C、114
D、116
A、三步
B、兩步
C、四步
D、五步
如圖,在一個梯形內有兩個三角形的面積分別為10與12,已知梯形的上底長是下底長的2/3.那麼餘下陰影部分的面積是多少?
A、21
B、23
C、25
D、27
如圖,正方形的邊長為10cm,AB=2cm,CD=3cm,求陰影部分的面積。
A、51
B、53
C、57
D、60
把一個棱長為1的正四面體和一個棱長為1的正八面體讓它們其中的一個等邊三角形面重合,所得的幾何體有多少個面?
B、8
C、9
D、10
祖暅原理:「冪勢既同,則積不容異」.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恆相等,則體積相等.設A、B為兩個同高的幾何體,p:A、B的體積不相等,q:A、B在等高處的截面積不恆相等,根據祖暅原理可知,p是q的( )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
一個正方體被切成8個小正方體,表面積增加了54平方厘米,求這個正方體的體積是多少立方厘米?
C、30
D、36
A、18
C、9√3
D、15√3
【四年級 幾何問題】
有10張長3厘米,寬2厘米的紙片,將它們按照下圖的樣子擺放在桌面上,那麼這10張紙片所蓋住的桌面的面積是多少平方厘米?
A、20
B、22
C、24
D、26
三角幾何共八角,三角三角,幾何幾何?
A、三角
B、四角
C、五角
D、六角
下面是一個漂亮禮盒的平面圖,請你求出它的面積。
A、27
D、24
已知圖中每個小方格的面積為1,四邊形ADBC的面積是多少?
A、22
D、28
幾何證明
1 r1=2r2
2 7/r4=2/r7+5/r1
新浪微博 70,000+
移動應用