一个年迈的大富翁着手进行遗产分配,特地把3个儿子和公证人叫到身旁。他说他把遗产分为两份(一大份一小份),而且他写完并保存好了他的遗嘱,但去世后才会公开。他说遗嘱里写了一个介于1~1000之间的随机的正整数P,要求三个儿子依次写一个整数且不能修改,谁的数字离这个正整数P最近,谁就获得他大份的遗产,其他二人平分小份(如果存在一样近的情况,则三人平分小份,大份捐给慈善机构)。大富翁不喜欢大儿子却喜欢小儿子,所以他额外要求由大儿子甲先写一个数字A并公开,然后二儿子乙写一个数字B并公开,三儿子丙最后写一个数字C并公开。
请问如果你是甲,由于大富翁偏心的规则,表面上似乎你拿到大份遗产的概率是三人中最低,但是你还是要争一争,那么你提出什么数字A,才能最大概率的拿到大份遗产?
假设:
大富翁的数字P完全随机,不存在喜好偏差,且ABC三个数不出来,P不公开;
甲有足够的思考时间,乙在知道A的情况下有足够的思考时间,同样丙在知道A和B后有足够的思考时间;
大儿子二儿子三儿子的智商差不多,且都很聪明和贪婪,相互之间不会合作;
不存在任何公证人弄虚作假或提前查看遗嘱的情况。
(另外由于1~1000是对称的,不妨设A≤500)
牧场主大B死后,他的三个儿子听律师宣读遗嘱:大B共有遗产若干头牛,大儿子小B分得五分之一,二儿子小Y分得四分之一,三儿子小F分得二分之一。不准杀牛伤牛,并且刚好把遗产分完,如果一个月之内未完成遗产分配,就将所有遗产捐赠。三个傻儿子一筹莫展,他们只好找附近的智者ZG来帮忙,并答应分得遗产后,每人拿出一头牛来答谢。ZG看了遗嘱,轻捻胡须,微微一笑,只用了29天就解决了这个问题。请问,在遗产最少的情况下,ZG和小B谁最后得到的牛多。
老人展转病榻已经几个月了,他想,去见上帝的日子已经不远了,便把孩子们叫到床前,铺开自己一生积蓄的钱财,然后对老大说:
“你拿去100克朗吧!”
当老大从一大堆钱币中,取出100克朗后,父亲又说:
“再拿剩下的十分之一去吧!”
于是,老大照拿了。
轮到老二,父亲说:“你拿去200克朗和剩下的十分之一。”
老三分到300克朗和剩下的十分之一,老四分到400克朗和剩下的十分之一,老五、老六、……都按这样的分法分下去。
在全部财产分尽之后,老人用微弱的声调对儿子们说:“好啦,我可以放心地走了。”
老人去世后,兄弟们各自点数自己的钱数,却发现所有人分得的遗产都相等。
聪明的朋友算一算:这位老人有多少遗产,有几个儿子,每个儿子分得多少遗产?