爱因斯坦的一位女友要求他有空时打电话给她。
“我的电话号码又更换了,难记,请记好。”女友说。
“好,我记着。”
“24361”
“啊,这有什么难记的呢。”爱因斯坦说,“两打与19的平方,我记住了。”
“可是您的电话号码不是说也要更换了吗?”女友又说。
“我真希望邮局不要再更换我的电话号码了,这实在令人头疼。你不仅要记住新的电话号码,还要通知所有的其他人。”
“不过,我也不应抱怨得太过分,因为这个新的电话号码已经是不错了。有三个特点是我新换的电话号码很好记:首先,原来的和新换的都是4个 数字;其次,新号码正好是原来的号码4的倍数;再次,原来的号码从后面倒着写过来正好是新的号码,所以我不用费劲就会记住新号码。。。。”
请你推理,爱因斯坦的新号码是多少?!
牛顿和爱因斯坦都非常喜欢蛋糕,并都有很强的逻辑分析能力。为此,他们拿两块相同的蛋糕,做了如下的游戏。
牛顿将第一块蛋糕切成了两份,其大小或许相同,或许不同(其中一份蛋糕的大小不限,可以无限接近于一块蛋糕的大小)。爱因斯坦就这两份蛋糕的大小情况将作出是先自己选择蛋糕,还是让牛顿先选择的决定。如果爱因斯坦选择自己先来,他肯定会选较大的那一份。当然如果爱因斯坦让牛顿先选择,可以想到牛顿会选择较大的那一份。
接下来,牛顿将第二块蛋糕切成了两份。如果爱因斯坦上一次选择自己先来,这次牛顿会优先选择,并肯定选较大的那一份。如果爱因斯坦上次让牛顿先选择,则这次会轮到爱因斯坦优先选择,他也肯定会选择较大的那一份。
问题是,假定这两个人都想得到总量最多的蛋糕,则对牛顿来说如何分割蛋糕才是他的最佳策略?
对于爱因斯坦,除了他的相对论之外,他对于科学相关的哲学思考,对诸多社会、政治、文化问题的关注和精辟的言论,有时却在传统只注意传播具体科学知识的科普中缺席了。这不能说不是一件令人遗憾的事。
对这段文字概括最为恰当的一项是?