1位老師有2個推理能力很強的學生,他告訴學生他手裡有以下的牌
黑桃:2,5,7,9,J,K
紅心:3,4,9,J,K
梅花:5,8,9,Q
方塊:2,7,8
然後從中拿出一張牌,告訴了A這張牌的大小,告訴了B這張牌的花色
A:我不知道這張是什麼牌
B:我知道你不知道這張是什麼牌
A:現在我知道了
B:現在我也知道了
請問這張是什麼牌?
牛頓和愛因斯坦都非常喜歡蛋糕,並都有很強的邏輯分析能力。為此,他們拿兩塊相同的蛋糕,做了如下的遊戲。
牛頓將第一塊蛋糕切成了兩份,其大小或許相同,或許不同(其中一份蛋糕的大小不限,可以無限接近於一塊蛋糕的大小)。愛因斯坦就這兩份蛋糕的大小情況將作出是先自己選擇蛋糕,還是讓牛頓先選擇的決定。如果愛因斯坦選擇自己先來,他肯定會選較大的那一份。當然如果愛因斯坦讓牛頓先選擇,可以想到牛頓會選擇較大的那一份。
接下來,牛頓將第二塊蛋糕切成了兩份。如果愛因斯坦上一次選擇自己先來,這次牛頓會優先選擇,並肯定選較大的那一份。如果愛因斯坦上次讓牛頓先選擇,則這次會輪到愛因斯坦優先選擇,他也肯定會選擇較大的那一份。
問題是,假定這兩個人都想得到總量最多的蛋糕,則對牛頓來說如何分割蛋糕才是他的最佳策略?