如图,一根木棍依靠在墙角上(面Ⅰ,Ⅱ,Ⅲ两两相互垂直)。木棍AB长为L,AB上有一点C,AC=(π/6)L。一开始木棍直立,之后不断通过摆放以微调点B的位置,点A的位置随之确定。点B,A分别一直都在面Ⅲ和面Ⅰ内移动,木棍移动时所处的平面一直与面Ⅱ平行。在移动过程中,点C经过的轨迹应该是怎么样的?(正视图)
我们知道,在同一个平面内,有无数个正圆经过同一点。那么在同一平面内,分别至少有多少个正圆经过同两点、至少有多少个正椭圆(上下两边、左右两边离中心的距离一样的椭圆)经过同三点呢?(下图中点的位置不是固定的,图片仅供参考;圆形边的宽度忽略不计)