朋友又出解密
因为马上要开学了,假期时间不多了,所以我和我的朋友打算在假期的最后这几天好好玩一顿。于是,我们就在今天晚上约定好一起出来玩,期间我们聊了一下天,她跟我说她的父亲非常喜欢打斯诺克台球。
我问她约定地点在哪里,她没有回答我,而是拿起了一张卡纸在上面画了画,然后给我。我看了她给我的卡纸,画着许多不同颜色的圆圈,分别为白、红、黑、黄、粉、蓝、绿、棕,每个圆圈内都有一个字母。(如下图所示,另外圆圈的大小和两圆圈间的距离与此题无关,忽略这两点)
她又出解密了,让我十分困惑。不过我想起她跟我说过她的父亲喜欢打斯诺克台球的事,我觉得可能与密码有关,于是上网查了一下,发现斯诺克台球也有不同的颜色,并且每种颜色的球的分数也不一样,其中白球为主球,不计分。最后,我终于解开了密码。
问: 约定地点在哪里?
卡小修数学大冒险7 红绿蓝数独
卡修斯他们正要起身赶路,却遇到了会属性转换技能的邪特大(xiao)人(hai),一场恶(da)战(nao)在所难免。
邪特施展技能,抛出了一道数独题:
“每行、列、粗线宫填入1~6不重复,一些上下或左右相邻的两格中间有一个彩色圆圈,这个圆圈代表一个数,设这两格为a、b,则圆圈代表的数=[a的算术平方根+b的算术平方根],[x]表示不超过x的最大整数。红色代表火系,绿色代表草系,蓝色代表水系。则B6=?F4=?”
卡小修镇定下来,破解了这道数独题,卡修斯顺势打败了最强三系转换精灵邪特。
那么B6和F4到底分别等于几?
难度:较难
伊朗流传着机智人物毛拉的故事。毛拉是一个水果商人,有一次,一个学者想考考毛拉的学识,他用拐杖在地上划了个圆圈,然后用眼睛死死地盯着毛拉。毛拉在圆圈中间画了一条线,把它分成相等的两部分。接着,学者又在地上划了个圆圈。毛拉立即在上面划分成四等份,并把其中的一份指向学者,另外三份指向自己。最后,学者做了个手背贴地、五指朝上的动作。毛拉则相反,他的动作是五指触地、手背朝上。学者看后,连连点头,表示赞同。有人请学者把问题解释一下。学者说:“我划圆圈表示地球,毛拉在中间划了条等分线,把地球分为南、北两个半球,说明他熟知地理;第二次他又把地球分为四等份,并告诉我其中三份是水,一份是陆地,这完全正确;最后我做出手势,问地球上的生物靠什么生长,毛拉用手势回答说靠的是雨水和阳光。他的丰富知识是无与伦比的。”后来,有人请毛拉解释他回答的哑谜,没想到幽默的毛拉用他卖水果的“专业知识”解答了这个哑谜,大家都被毛拉逗乐了。你知道毛拉是怎么解释的吗?
从下图选一个圆圈开始,固定往顺时针或逆时针数,
每数六个时,把第六个圆圈移除,然后继续数下去,
如果最后,所有白色的圆圈都移除了,
请问应该是从哪一个圆圈开始、往哪个方向数的呢?
(注:开始的那个圆圈也要数进去,比如说从上图最顶端的圆圈开始顺时钟数六个是:●○●○○○要移掉最后那个○)
答案的形式为方向+序号,以最顶端的蓝圈为序号1.
例:顺3/逆11 意思就是右半边第二个蓝圈