有5个强盗抢劫了100个金币,他们决定按照下面的方式来分配这些金币。首先,5个人抽签决定先后顺序,然后由1号提出分配方案,然后5个人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则就把他杀死。如果1号死了,那么由2号提出方案,剩下4个人再表决,同样,当且仅当超过半数的人同意时,按照他的方案进行分配,否则就把他杀死...... 以此类推下去。
这5个强盗都很聪明,并且贪婪成性,喜欢杀人,互相之间非常了解。
那么,如果你被抽中1号。需要最先提出方案,怎么分配才能保全自己而又使自己的收益最大呢,1号最多可以拿多少?
有A、B、C、D、E、F和G等七位国务议员能参加Ⅰ号、Ⅱ号、Ⅲ号议案的表决。按照议会规定,有四位或者四位以上议员投赞成票时,一项议案才可以通过。并且每个议员都不可弃权,必须对所有议案作出表决。已知:
(1)A反对这三项议案;
(2)其他每位议员至少赞成一项议案,也至少反对一项议案;
(3)B反对Ⅰ号议案;
(4)G反对Ⅱ号和Ⅲ号议案;
(5)D和C持同样态度;
(6)F和G持同样态度。
问题:
(1)赞成Ⅰ号议案的议员是哪一位?
A.B
B.C
C.D
D.E
E.G
(2)Ⅱ号议案能得到的最高票数是:
A.2
B.3
C.4
D.5
E.6
(3)下面的断定中,哪一个是错的:
A.B和C同意同一议案;
B.B和G同意同一议案;
C.B一票赞成,两票反对;
D.C两票赞成,一票反对;
E.F一票赞成,两票反对。
(4)如果三个议案中某一个议案被通过,下列哪一位议员肯定投赞成呢:
A.B
B.C
C.E
D.F
E.G
(5)如果E的表决跟G一样,那么,我们可以确定:
A.Ⅰ号议案将被通过;
B.Ⅰ号议案将被否决;
C.Ⅱ号议案将被通过;
D.Ⅱ号议案将被否决;
E.Ⅲ号议案将被通过。
(6)如果C赞成Ⅱ号和Ⅲ号议案,那么,我们可以确定:
A.Ⅰ号议案将被通过;
B.Ⅰ号议案将被否决;
C.Ⅱ号议案将被通过;
D.Ⅱ号议案将被否决;
E.Ⅲ号议案将被通过。