三个魔术师印制了许多不同面值的“钱”,他们每人各持有100卢布的“钱”。现知他们每人都可以支付由1到25卢布的各种不同数额的“货款”(包括找回“零钱”)。三个魔术师的钱合在一起是否可以支付由100到200卢布的各种不同数额的“货款”(魔术师印制的“钱”的面值可以不同于正常的钱,并且上述“货款”的数额都是整数)。
某大公的卫队里有1000名武士。任何两名武士或者互为朋友,或者互为敌人,或者互不认识。武士们都是寡合的,他们都只同朋友才说话。但是,现状使得每名武士都不开心,因为对于每名武士来说,他的任何两个朋友都互为敌人,而他的任何两个敌人都互为朋友。为了使得所有武士都知道大公的一项新决定,大公是否至少需要通知200名武士。
1994圣彼得堡数学奥林匹克(初中)
两人轮流在101×101的方格表中摆放棋子,每人每次摆放1枚棋子。先开始者可以把棋子放在任何一个这样的空格中:该格所在的行与列中已经摆放的棋子总数为偶数;后开始者则可以把棋子放在任何一个这样的空格中:该格所在的行与列中已经摆放的棋子总数为奇数。谁不能再摆放棋子,就算谁输。试问:谁有取胜策略?
水洼里有19条蓝色变形虫和95条红色变形虫。有时它们会发生互变:如果2条红色变形虫相遇,会变成1条蓝色变形虫;如果2条蓝色变形虫相遇,在变成1条变形虫之后又立即分裂为4条红色变形虫;而1条红色变形虫与1条蓝色变形虫相遇,则在变成1条变形虫之后又立即分裂为3条红色变形虫。到了晚上,水洼里一共有100条变形虫。试问:其中有多少条蓝色变形虫?
第43届IMO预选题
设T是由有序三元数组(x,y,z)组成的集合,其中x、y、z是整数,且0≤x,y,z≤9。甲、乙两人玩下面的游戏:甲在T中选一个三元数组(x,y,z),乙不得不用几次“运动”来猜甲所选的三元数组。一次“运动”为:乙给甲一个T中的三元数组(a,b,c),甲回答乙的数是|x+y-a-b|+|y+z-b-c|+|z+x-c-a|。求“运动”次数的最小值,使得乙能知道甲所选的三元数组。