ÒÑÖªÇúÏßC1£ºF(x£¬y)=0£¬C2£ºF(x£¬y£©+¦ËF£¨m£¬n£©=0£¨¦Ë¡Ù0£©£¬µãA£¨m£¬n£©²»ÔÚÇúÏßC1ÉÏ£¬ÊÔÇóÁ½ÇúÏßC1ºÍC2µÄ½»µã¸öÊý.
ÇúÏߦ££ºy2 = 4x ÉÏÒ»¶¨µãP(x0£¬2)£¬·½ÏòÏòÁ¿Îªd = (1£¬-1) µÄÖ±Ïßl£¨²»¹ýP µã£©ÓëÇúÏߦ£ ½»ÓÚA¡¢B Á½µã£¬ÉèÖ±ÏßPA¡¢PB бÂÊ·Ö±ðΪkPA£¬kPB£¬ÇëÎÊkPA + kPB µÄֵΪ£¿
ÒÑÖªÖÐÐÄÔÚÔµãµÄË«ÇúÏßC µÄÓÒ½¹µãΪ(2£¬0)£¬ÓÒ¶¥µãΪ(¡Ì3£¬0) .
Ë«ÇúÏßC µÄ·½³ÌΪx2/3 - y2/1 = 1£¬ÈôÖ±Ïßl£ºy = kx + ¡Ì2 ÓëË«ÇúÏßC ºãÓÐÁ½¸ö²»Í¬µÄ½»µãA ºÍB£¬ÇÒÏòÁ¿OA¡¤ÏòÁ¿OB > 2£¬ÇóʵÊýk µÄÈ¡Öµ·¶Î§¡£
A¡¢(-¡Ì3£¬-¡Ì3/3)¡È(¡Ì3/3£¬¡Ì3)
B¡¢(-¡Ì3£¬-¡Ì3/3)¡È(-¡Ì3/3£¬¡Ì3/3)¡È(¡Ì3/3£¬¡Ì3)
ÉèµãF(-c£¬0)ÊÇË«ÇúÏß(x^2)/(a^2)¨C(y^2)/(b^2) = 1µÄ×󽹵㣬¹ýF×÷Ö±ÏßLÓëË«ÇúÏß×ó£¬ÓÒÁ½Ö§·Ö±ð½»ÓÚA¡¢BÁ½µã£¬ÆäÖеãBµÄºá×ø±êΪc/2£¬ÈôÏòÁ¿FA = x¡¤ÏòÁ¿AB £¬ÇÒx¡Ê[2/3£¬3/4]£¬ÔòË«ÇúÏßÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊǶàÉÙ£¿
¡¾²¹³ä˵Ã÷¡¿Ñ¡ÏîÖеġ°¡Ì¡±±íʾ£º¸ùºÅ