在所有周長相等的長方形中,正方形擁有最大的面積;在所有周長相等的平面圖形中,圓擁有最大的面積;在所有表面積相等的長方體中,正方體擁有最大的體積;在所有表面積相等的立體圖形中,球擁有最大的體積。所有這類問題的答案都是越對稱的圖形越好嗎? George Pólya 在 Mathematical Discovery 一書中的第 15 章里舉了下面這個例子。
在給定圓周上選取四個點構成一個四邊形,那麼正方形的面積一定是最大的嗎?答案是肯定的。只要有哪個點不在相鄰兩點之間的圓弧的中點處,我們都可以把它移動到這段圓弧的中點處,使得整個圖形的面積變得更大。好了,我們現在的問題是,在球面上選取八個點構成一個頂點數為 8 的多面體,那麼正方體一定是體積最大的嗎?