大礼堂里一共有1000个座位,它们的编号分别为1,2,3,…,1000。某次音乐会的售票工作已经完成,经统计,共有800个人拿到了入场券。由于入场券数量小于座位数量,因此大礼堂的座位完全足够。每张入场券上都印有座位号,入场者凭入场券对号入座。在这800个人即将按顺序依次入场时,工作人员发现了一个严重的问题:由于印制错误,入场券上印的座位号只有1到500。我们假设这500个座位号每一个都在入场券中至少出现了一次。但是,由于入场券一共有800张,因而这800个人中有一些人的入场券上印有相同的座位号。这样,入场时必将发生很多次座位的争执。我们假定,当一个人入场后发现他该坐的位置上已经有了人时,这两个人将发生一次争执,争执的结果总是这个人不能夺回座位;此时该人继续寻找下一个座位号并可能再次发生争执,直到找到一个空位为止。是否不管这些观众以什么样的顺序入场,座位争执的总次数都是一样的。
聪明鼠与他的4位朋友组成一支队伍参加了一场比赛,比赛规则是5人当中的每个人在4个门当中选择一个门进入,选择完毕后主持人有6次机会,每次选择一个门(可重复选择)。如主持人选择的门有人则抓出1个人(一次只能抓出1个人),该人在被抓出后则失去获得奖金的机会;如主持人选择的门无人则行动失败。最终将会按照剩余人数,即每剩余一人有10000元的奖金,总奖金发放给整个队伍进行平分。请问,哪种选择对聪明鼠一行人最有利(选项当中不分顺序)?