下面这个问题来自于IMO2010中的第5题。桌子上有B1、B2、B3、B4、B5、B6共六个盒子,初始时每个盒子里面都有一枚硬币。允许以下两种操作:(1)选择一个非空的盒子Bj(1≤j≤5),从Bj里拿走一枚硬币,然后在Bj+1里添加两枚硬币。
(2)选择一个非空的盒子Bk(1≤k≤4),从Bk里拿走一枚硬币,然后交换Bk+1和Bk+2里面的硬币数(这两个盒子里的硬币数都有可能是0)。是否有可能通过有限次操作,使得最后B1、B2、B3、B4、B5都是空的,并且B6里面恰好有2010^(2010^2010)枚硬币(符号^表示乘方)?
有一个正方形的房间,房间的四壁都是镜子。房间里有一个天使和一个恶魔。假设房间是一个单位正方形 [0, 1] × [0, 1] ,那么天使和恶魔便是这个正方形内的两个点 (a, b) 和 (c, d) 。恶魔想要在原地发射致命激光杀死天使(激光可以无限地在镜子间反射)。天使可以根据恶魔的位置,预先在房间里放置一些守卫为自己挡住激光(守卫实际上也是一个个点)。当然,天使可以在自己周围密密麻麻地放一圈守卫,围成一个封闭的圆形,从而让恶魔不管朝什么方向发射激光,最终都无法击中天使。我们的问题是,能把守卫的数量减少到可数个点吗?能把守卫的数量减少到有限个点吗?
对于哪些n,存在一个1到n-1的排列S_1, S_2, …, S_n-1,使得T_1, T_2, …, T_n-1也是一个1到n-1的排列,其中,
T_1 = S_1 mod n,
T_2 = (S_1 + S_2) mod n,
T_3 = (S_1 + S_2 + S_3) mod n,
…….
T_n-1 = (S_1 + S_2 + … + S_n-1) mod n.