下面這個問題來自於IMO2010中的第5題。桌子上有B1、B2、B3、B4、B5、B6共六個盒子,初始時每個盒子裡面都有一枚硬幣。允許以下兩種操作:(1)選擇一個非空的盒子Bj(1≤j≤5),從Bj里拿走一枚硬幣,然後在Bj+1里添加兩枚硬幣。
(2)選擇一個非空的盒子Bk(1≤k≤4),從Bk里拿走一枚硬幣,然後交換Bk+1和Bk+2裡面的硬幣數(這兩個盒子里的硬幣數都有可能是0)。是否有可能通過有限次操作,使得最後B1、B2、B3、B4、B5都是空的,並且B6裡面恰好有2010^(2010^2010)枚硬幣(符號^表示乘方)?
有一個正方形的房間,房間的四壁都是鏡子。房間里有一個天使和一個惡魔。假設房間是一個單位正方形 [0, 1] × [0, 1] ,那麼天使和惡魔便是這個正方形內的兩個點 (a, b) 和 (c, d) 。惡魔想要在原地發射致命激光殺死天使(激光可以無限地在鏡子間反射)。天使可以根據惡魔的位置,預先在房間里放置一些守衛為自己擋住激光(守衛實際上也是一個個點)。當然,天使可以在自己周圍密密麻麻地放一圈守衛,圍成一個封閉的圓形,從而讓惡魔不管朝什麼方向發射激光,最終都無法擊中天使。我們的問題是,能把守衛的數量減少到可數個點嗎?能把守衛的數量減少到有限個點嗎?
對於哪些n,存在一個1到n-1的排列S_1, S_2, …, S_n-1,使得T_1, T_2, …, T_n-1也是一個1到n-1的排列,其中,
T_1 = S_1 mod n,
T_2 = (S_1 + S_2) mod n,
T_3 = (S_1 + S_2 + S_3) mod n,
…….
T_n-1 = (S_1 + S_2 + … + S_n-1) mod n.