下面的40个命题据说是某个谜语的一部分。姑且先不论它们到底是谜底的一部分还是全部,请给出每个命题的正误,使这40个命题可以自洽(互不矛盾)。
1. 唯一得到谜底那个词语的方法是,把40个答案等分成4组,每组代表一个10比特编码的字母。
2. 唯一得到谜底那个词语的方法是,把40个答案等分成5组,每组代表一个8比特编码的字母。
3. 唯一得到谜底那个词语的方法是,把40个答案等分成8组,每组代表一个5比特编码的字母。
4. 顺序在本句之前3位的那一句话为真。
5. 所有“顺序在本句之前3位的那一句话为真。”的句子中,至少有两句为真。
6. 顺序在本句之前3位的那一句话为真。
7. 顺序在本句之前3位的那一句话为真。
8. 所有真句子中的1/6,位于第1句和本句之间,此范围包括第1句和本句。
9. 存在连续的4句假句子,但不存在更长的假句子序列。
10. 存在连续的5句假句子,但不存在更长的假句子序列。
11. 存在连续的6句假句子,但不存在更长的假句子序列。
12. 所有标号为12的倍数的句子中,有奇数个句子为真。
13. 所有标号为13的倍数的句子中,有偶数个句子为真。
14. 本句的上一句和下一句中,有且仅有1句为真。
15. 如果把下面的那句换成:“所有以‘所有真句子中的1/6’开头的句子都是真的。”,那么其真假性不变。
16. 如果把上面的那句换成:“所有以‘所有真句子中的1/6’开头的句子都是真的。”,那么其真假性不变。
17. 如果把本句换成:“所有以‘所有真句子中的1/6’开头的句子都是真的。”,那么其真假性不变。
18. 任何标号数除以6余3的句子都为假。
19. 本句的上一句和下一句中,有且仅有1句为真。
20. 所有真句子中的1/2,位于第1句和本句之间,此范围包括第1句和本句。
21. 本句的上一句和下一句,要么全为真,要么全为假。
22. 31-40句中的真句子比1-10句中的真句子多。
23. 31-40句中的真句子比11-20句中的真句子多。
24. 在本句和前面的两句中,奇数个句子为真。
25. 当我把谜底的那个词语告诉三个人,并让他们在以下5个符号中选择联想到的符号:“○+□*≈”,他们中的大多数会选择“□”(方形)。
26. 当我把谜底的那个词语告诉三个人,并让他们在以下5个符号中选择联想到的符号:“○+□*≈”,他们中的大多数会选择“≈”(波浪线)。
27. 当我把谜底的那个词语告诉三个人,并让他们在以下5个符号中选择联想到的符号:“○+□*≈”,他们中的大多数会选择“○”(圆形)。
28. 当我把谜底的那个词语告诉三个人,并让他们在以下5个符号中选择联想到的符号:“○+□*≈”,他们中的大多数会选择“*”(星形)。
29. 存在一个最长的真句子序列,且本句为这个序列的一部分。
30. 所有标号为6的倍数的句子中,有且仅有一半句子为真。
31. 在本句和下面两句中,有且仅有一句为真。
32. 所有标号为2的幂的句子中,有且仅有一半句子为真。
33. 顺序在本句之前10位的那一句话为真。
34. 如果将前两句顺序颠倒,其他句子真假性不变,则最后结果仍然不会自相矛盾。
35. 所有标号为7的倍数的句子中,有且仅有一句为真。
36. 所有标号为9的倍数的句子中,没有一句为真。
37. 第30句和本句真假性一样。
38. 所有真句子中的1/6,位于本句和最后一句之间,此范围包括本句和最后一句。
39. 本句和下一句都为真。
40. 所有标号为5的倍数的句子中,有且仅有一半句子为真。