有64個囚犯被國王抓住,國王給他們一次生存的機會,一個房間內有6個燈且均滅,只能控制開閉,任何記號都是不被允許的,且不允許接觸除了燈開關以外的任何東西,且每個囚犯只能改變一個燈的狀態。
這64個囚犯被以一定的順序(由國王指定)要求進入房間內並改變燈的狀態,且囚犯不知道自己是第幾個進入的。如果有囚犯確認自己是最後一個進入的並且確實是最後一個則所有囚犯被釋放,否則所有囚犯被處死。
現在他們被給予10分鐘時間來討論對策,請問如何保證所有囚犯活下來?
如果是100個囚犯,則討論出的最佳對策的成功率為多少?
黑板上寫有1,2,3,…,1998,這1998個自然數,對它們做998次操作,每次操作規則如下:擦掉寫在黑板上的三個數后,再添上所擦掉的三個數之和的末位數字。例如:擦5,13和1998后,添加上6;若再擦掉6,6,38后,添加上0,等等。如果最後發現黑板上剩下的兩個數,一個是25,那麼另一個數是多少?