本題為求拋硬幣連續出現同一面的概率問題。
一枚硬幣有兩面:「H面」和「T面」,設拋硬幣出現「H面」和「T面」的概率各為50%。
拋10次硬幣,求至少連續2次出現「H面」的概率;求正好連續2次出現「H面」的概率?
拋n次硬幣,求至少連續k次出現「H面」的概率;求正好連續k次出現「H面」的概率?
如果設拋硬幣出現「H面」的概率為p,出現「T面」的概率為1-p。k<=n
拋n次硬幣,求至少連續k次出現「H面」的概率;求正好連續k次出現「H面」的概率?
這題的主要目的是求n重貝努利試驗中同一結果連續出現的問題。
五個商人,帶著一個寵物猴,一起買了一堆西瓜。但是暮色已晚,他們決定第二天把西瓜平均分成五份,每人一份。夜裡,一個商人先醒了,他看了看地上的西瓜,想:我先給它分好吧。於是把西瓜平均分成五份,但不巧剩了一個。於是給猴吃了。他自己拿走了五份中的一份,又去zZZ…了。過一會又一個商人醒了,他一看:咦?地上怎麼是四堆西瓜?於是他把這四堆西瓜放到一起,又平均分成了五份。不巧,又剩了一個。於是給猴吃了。他自己拿走了五份中的一份,又去zZZ…了。過會,第三個商人又醒了,於是重複了第二個商人的行為,恰好還是剩一個。又給猴吃了……就這樣,5個商人都這樣做了一次。第二天早晨,他們一起把地上的四堆西瓜又重新分成了5份。恰好還是剩一個,又給猴吃了(看來此猴已經快撐死了-_-!),每個人拿走一份。問:最開始這堆西瓜最少有多少個?
下面這個有趣的問題來自於 2012 年 4 月的 IBM Ponder This 謎題。
有 8 根很長的並且顏色不同的水管並排放在一起, A 、 B 兩人分別位於這些水管的兩端。兩個人手中各有若干根很短的橡皮管,他們可以用這些橡皮管任意連接自己這一側的水管口。 A 的旁邊還有一個水龍頭, A 可以用橡皮管把水龍頭與自己這一側的其中一個水管口相連。
A 、 B 兩人各將獲得一個五位 01 串,然後兩人可以根據自己手中的 01 串來連接水管口。當 A 打開水龍頭后,容易看出,水必然會從其中一側流出。兩人需要保證,如果兩人手中的 01 串相等,則水從 A 的一側流出,否則水從 B 的一側流出。他們事先可以商量一個策略,但遊戲一旦開始,兩人一旦拿到各自的 01 串之後,就不允許再交流了(因此兩人都不知道對方手中的 01 串是什麼)。請你想出一個能保證兩人獲勝的策略。