本题为求抛硬币连续出现同一面的概率问题。
一枚硬币有两面:“H面”和“T面”,设抛硬币出现“H面”和“T面”的概率各为50%。
抛10次硬币,求至少连续2次出现“H面”的概率;求正好连续2次出现“H面”的概率?
抛n次硬币,求至少连续k次出现“H面”的概率;求正好连续k次出现“H面”的概率?
如果设抛硬币出现“H面”的概率为p,出现“T面”的概率为1-p。k<=n
抛n次硬币,求至少连续k次出现“H面”的概率;求正好连续k次出现“H面”的概率?
这题的主要目的是求n重贝努利试验中同一结果连续出现的问题。
一个复原好的三阶魔方,现在假设按照某种既定的旋转规则一直转下去,比如横着转一下,在竖着转两下,然后再横着转一下,竖着转两下,一直持续下去,把这种旋转规则既定为A,我们知道在以A规则旋转后魔方前后六面的组合方式定然不同,但是要看A规则是怎样的了,比如也有可能执行N次A规则后魔方又复原,【比如竖着转魔方一边转4次魔方又复原了】,现在问题是如果正面拿着魔方一面,比如白色一面,一直持续的沿着顺时针的方向转一次白面的一边,那么到最后魔方会再次复原吗?
假设酒的酒精度在0.00到80.00度之间的某一固定值时为最佳,酒的酒精度越接近此值酒越好。某酒厂请来一位特级品酒师(当然是价格不菲),他每次会品3杯酒,然后排出3杯酒的好坏次序,如果其中两杯距离最佳值一样(比如一个高出1度,一个低出1度),则这两杯的相对次序随机排列。该大师会品3次(共 9杯),请问:
1.如何勾兑每杯酒的度数,才能使最终结果最接近最佳值?
2.如果比最佳值低1度则品质降M,比最佳值高1度则品质降N,且M=K*N,K如果=2,如何试?
3.K如果未知,如何试?
考虑一个传统的猜数游戏。 A 、 B 两名玩家事先约定一个正整数 N ,然后 A 在心里想一个不超过 N 的正整数 x , B 则需要通过向 A 提问来猜出 A 心里想的数。 B 的问题只有唯一的格式:先列出一些数,然后问 A “x 是否在这些数里”, A 则需要如实回答“是”或者“否”。显然, B 是保证能猜到 x 的,只需要依次询问“x 是否等于 1 ”,“x 是否等于 2 ”即可。由于 B 可以精心选出满足某种特征的所有数,询问 x 是否在这些数里,因而 B 还可以做得更好。例如当 N = 16 时, B 第一次可以问“x 是否小于等于 8 ”,或者等价地,“x 是否属于 {1, 2, 3, 4, 5, 6, 7, 8} ”;接下来,根据 A 的回复继续细问“x 是否小于等于 4 ”或者“x 是否小于等于 12 ”,以此类推。另一种方法则是询问“x 的二进制表达的第一位是否是 1”,“x 的二进制表达的第二位是否是 1”,以此类推,从而获得 x 的二进制表达的所有数位,便能推出 x 来。
现在,有意思的问题来了。假设 A 可以偶尔说谎(但保证不会连续说谎两次),那么 B 还能通过询问猜出 A 所想的数吗?如果愿意的话, B 可以询问任意多次。
下面这个有趣的问题来自于 2012 年 4 月的 IBM Ponder This 谜题。
有 8 根很长的并且颜色不同的水管并排放在一起, A 、 B 两人分别位于这些水管的两端。两个人手中各有若干根很短的橡皮管,他们可以用这些橡皮管任意连接自己这一侧的水管口。 A 的旁边还有一个水龙头, A 可以用橡皮管把水龙头与自己这一侧的其中一个水管口相连。
A 、 B 两人各将获得一个五位 01 串,然后两人可以根据自己手中的 01 串来连接水管口。当 A 打开水龙头后,容易看出,水必然会从其中一侧流出。两人需要保证,如果两人手中的 01 串相等,则水从 A 的一侧流出,否则水从 B 的一侧流出。他们事先可以商量一个策略,但游戏一旦开始,两人一旦拿到各自的 01 串之后,就不允许再交流了(因此两人都不知道对方手中的 01 串是什么)。请你想出一个能保证两人获胜的策略。