有13個海盜,每個海盜都是絕頂聰明且很理智,他們搶得5枚金幣,他們按抽籤的順序依次提方案:首先由13號提出分配方案,然後13人表決,達到半數同意方案才被通過,否則他將被扔入大海喂鯊魚.如果13號的不通過則12號提案。
按正常的方案,13號必死,但是13號想出了一個新的方案:
1、3、5、7、9、12這6個海盜重新隨機排序,最大號的海盜不得到金幣,另外5個海盜1人1個金幣,則13號有概率通過方案。
那麼應該有方案:選出M個海盜隨機排序分N個金幣,依然是這M個海盜從最大號的提出方案,在這M個海盜中達到半數同意方案才被通過,否則他將被扔入大海喂鯊魚。(當然13號可以參加也可以不參加投票是否同意)
此方案中,M和N取何值時,13號方案通過的概率最大且13號能獲得最多的金幣?
n的倍數有以下特徵,請問數學上怎麼給出證明?
(3)若一個整數的數字和能被3整除,則這個整數能被3整除。
(4)若一個整數的末尾兩位數能被4整除,則這個數能被4整除。
(5)若一個整數的末位是0或5,則這個數能被5整除。
(7)若一個整數的個位數字截去,再從餘下的數中,減去個位數的2倍,如果差是7的倍數,則原數能被7整除。如果差太大或心算不易看出是否7的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。例如,判斷133是否7的倍數的過程如下:13-3×2=7,所以133是7的倍數;又例如判斷6139是否7的倍數的過程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍數,余類推。
(8)若一個整數的未尾三位數能被8整除,則這個數能被8整除。
(9)若一個整數的數字和能被9整除,則這個整數能被9整除。
(10)若一個整數的末位是0,則這個數能被10整除。
(11)若一個整數的奇位數字之和與偶位數字之和的差能被11整除,則這個數能被11整除。11的倍數檢驗法也可用上述檢查7的「割尾法」處理!過程唯一不同的是:倍數不是2而是1!
(12)若一個整數能被3和4整除,則這個數能被12整除。
(13)若一個整數的個位數字截去,再從餘下的數中,加上個位數的4倍,如果差是13的倍數,則原數能被13整除。如果差太大或心算不易看出是否13的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(14)若一個整數的個位數字截去,再從餘下的數中,減去個位數的5倍,如果差是17的倍數,則原數能被17整除。如果差太大或心算不易看出是否17的倍數,就需要繼續上述「截尾、倍大、相減、驗差」的過程,直到能清楚判斷為止。
(15)若一個整數的個位數字截去,再從餘下的數中,加上個位數的2倍,如果差是19的倍數,則原數能被19整除。如果差太大或心算不易看出是否19的倍數,就需要繼續上述「截尾、倍大、相加、驗差」的過程,直到能清楚判斷為止。
(16)若一個整數的末三位與3倍的前面的隔出數的差能被17整除,則這個數能被17整除。
(17)若一個整數的末三位與7倍的前面的隔出數的差能被19整除,則這個數能被19整除。
(18)若一個整數的末四位與前面5倍的隔出數的差能被23(或29)整除,則這個數能被23整除。