取一枚较长的缝衣针或者是大头针,截掉两端,留下中间粗细均匀的20毫米长的一段。
再取一张白纸,在上面画许多距离为40毫米的平行线,并在纸下面垫一层柔软的东西,防止针的反弹。
然后把针拿到某一个高度,再让它自由落到纸上,这时,针和纸上的平行线只可能产生两种情况:相交(包括针的一端正好落到一根线上),或者不相交。
重复这个动作把每一次相交和不相交的情况记录下来,投掷的次数越多越好,最后把总的次数(相交和不相交的次数之和)除以相交的次数,将得到圆周率\( \pi \)的近似值。投掷次数越多,得到的\( \pi \)值越精确。
为什么会这样呢?
提示:
1)虽然是概率,但毕竟是圆周率,肯定跟圆有关系的。
2)两个数字也是突破口。
3)真人真事:瑞士天文学家服尔夫投掷了5000次,得到\( \pi =3.159 \)
4)理论相交次数与长度成正比,而形状没有关系
有13个海盗,每个海盗都是绝顶聪明且很理智,他们抢得5枚金币,他们按抽签的顺序依次提方案:首先由13号提出分配方案,然后13人表决,达到半数同意方案才被通过,否则他将被扔入大海喂鲨鱼.如果13号的不通过则12号提案。
按正常的方案,13号必死,但是13号想出了一个新的方案:
1、3、5、7、9、12这6个海盗重新随机排序,最大号的海盗不得到金币,另外5个海盗1人1个金币,则13号有概率通过方案。
那么应该有方案:选出M个海盗随机排序分N个金币,依然是这M个海盗从最大号的提出方案,在这M个海盗中达到半数同意方案才被通过,否则他将被扔入大海喂鲨鱼。(当然13号可以参加也可以不参加投票是否同意)
此方案中,M和N取何值时,13号方案通过的概率最大且13号能获得最多的金币?