老王熬夜工作到凌晨 2 点多时,实在不行了,倒在床上就开始呼呼大睡。睡觉前他看了一下闹钟,发现了一件有趣的事情——时钟上的时针和分针正好重合在了一起。早晨 8 点多时,老王被闹钟闹醒。他看了一下闹钟,又发现了一件有意思的事——此时时钟上的时针和分针正好指向完全相反的方向。老王究竟睡了多久呢?不足 6 个小时, 6 个多小时,还是正好 6 个小时?
某著名歌星于某日被发现死在家中,现场有一被打翻的酒和类似暗号的迹样93925925,经排查,有三人被列入嫌疑人名单,分别是:A.陈亚宇 B.宋华静 C.宋金金
三人与被害者之间的关系是:A被害者男友,曾有不良记录,据目击者称,之前两人关系破裂,有口角之争。
B.被害者堂姐, 曾与被害者争男友A,后关系破裂,有人看见当晚类似于她的人匆匆离开被害者家。
C.被害者弟弟,因遗产分割一事多次交涉,据目击者称,曾多次看见他在他姐姐门前徘徊,没有不在场证明。
凶手到底是谁?你是如何推出的?
IBM社会招聘面试题:你有两个罐子,分别装着50个红色的玻璃球和50个蓝色的玻璃球。随意拿起一个罐子,然后从里面随机拿出一个玻璃球。怎样最大程度地增加让自己拿到红球的机会?利用这种方法,拿到红球的几率有多大?
注:在摸球前,你可以对罐子中的球做一次分配,分配后罐子重新被打乱
n的倍数有以下特征,请问数学上怎么给出证明?
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除。
Sroan和Pasber卖苹果。Sroan因事要走,把自己的苹果都给了Pasber代售。两人有同样多的苹果,Sroan的苹果好,2个卖1元;Pasber的苹果3个卖1元。Pasber为了公平5个卖2块。卖完了所有苹果。两人平分完钱后,Sroan发现合着卖的钱比两人自己分着卖的总钱少7元!问Sroan比自己卖苹果赔了多少?Pasber捞了多少?