考慮一個傳統的猜數遊戲。 A 、 B 兩名玩家事先約定一個正整數 N ,然後 A 在心裡想一個不超過 N 的正整數 x , B 則需要通過向 A 提問來猜出 A 心裡想的數。 B 的問題只有唯一的格式:先列出一些數,然後問 A 「x 是否在這些數里」, A 則需要如實回答「是」或者「否」。顯然, B 是保證能猜到 x 的,只需要依次詢問「x 是否等於 1 」,「x 是否等於 2 」即可。由於 B 可以精心選出滿足某種特徵的所有數,詢問 x 是否在這些數里,因而 B 還可以做得更好。例如當 N = 16 時, B 第一次可以問「x 是否小於等於 8 」,或者等價地,「x 是否屬於 {1, 2, 3, 4, 5, 6, 7, 8} 」;接下來,根據 A 的回復繼續細問「x 是否小於等於 4 」或者「x 是否小於等於 12 」,以此類推。另一種方法則是詢問「x 的二進位表達的第一位是否是 1」,「x 的二進位表達的第二位是否是 1」,以此類推,從而獲得 x 的二進位表達的所有數位,便能推出 x 來。
現在,有意思的問題來了。假設 A 可以偶爾說謊(但保證不會連續說謊兩次),那麼 B 還能通過詢問猜出 A 所想的數嗎?如果願意的話, B 可以詢問任意多次。
「come in」
「boss,這是我們公司今年的報銷數據」
「我看看」
boss成熟地操作著滑鼠。
「boss,我們的員工今年一共報銷了2772張單,總計2500345元。平均每張單大約報銷902元」
突然,boss眼神變得凝重。
「你確定你沒造假?」
「沒哇,boss,這些數據肯定不是人造的。你看看,這2772張單,每張單報銷的金額數據裡面,第一位數為1至9都幾乎各佔九分之一,符合統計學規律啊」
「來人,把這個財務拉出去處理一下」
「饒命啊,boss,饒。。。」
「砰,砰,砰」
End。
問題:boss從哪裡看出財務造假了,為什麼?
本題為求拋硬幣連續出現同一面的概率問題。
一枚硬幣有兩面:「H面」和「T面」,設拋硬幣出現「H面」和「T面」的概率各為50%。
拋10次硬幣,求至少連續2次出現「H面」的概率;求正好連續2次出現「H面」的概率?
拋n次硬幣,求至少連續k次出現「H面」的概率;求正好連續k次出現「H面」的概率?
如果設拋硬幣出現「H面」的概率為p,出現「T面」的概率為1-p。k<=n
拋n次硬幣,求至少連續k次出現「H面」的概率;求正好連續k次出現「H面」的概率?
這題的主要目的是求n重貝努利試驗中同一結果連續出現的問題。
開放題高等數學題庫提供各類高等數學題目及答案。高等數學試題是適合大學及其以上學歷的人解答的數學題,對鞏固各類數學知識點有極大幫助。
如果你有其他有關高等數學的好題目,歡迎與我們分享 請發布高等數學的智力題