参加朝圣行列的农夫,这位 "发家致富者勤劳坚强,他一辈子用大车往自己的田里拖粪;他不怕 严寒酷暑,既俭朴又虔诚。"这 个朴实的汉子,为给同路人提问题而发窘要知道,难题对于他那简单的智力是不胜任的,但由于大家坚持,他就讲了一个平常与他聪明的邻人讨论过的题目。
"苏塞克斯这个地方,我到过那里,有一块土地上长着16棵 美丽的橡树,它们形成12行,每行四棵树。有一次某个学识渊博的人旅行到那里,他说,这16棵树可以形成15行,每行四棵树。你们说说,应当怎样栽种?
曾经有这样一个故事,一名毕业于名牌大学数学系的学生,因为他是学校的佼佼者,所以十分傲慢;一位老者很看不惯就给他出了一道求容积的题,老者只是拿了一个灯泡,让他计算出灯泡的容积是多少。傲慢的学生拿着尺子算了好长时间,记了好多数据,也没有算出来,只是列出了一个复杂的算式来。而老者只是把灯泡中注满了水,然后用量筒量出了水的体积,很简单就算出了灯泡的容积。
现在如果你手中只有一把直尺和一只啤酒瓶子,而且这只啤酒瓶子的下面2/3是规则的圆柱体,只有上面1/3不是规则的圆锥体。以上面的事例做参考,你怎样才能求出它的容积呢?
某地的慈善委员会组织了一次驱车寻宝活动,寻找一桶藏在Z村的啤酒。所有的车先在A村集合,然后竞赛者们分头去其他九个村子寻找线索。把这些线索集中在一起研究,才会知道那桶啤酒藏在Z村的什么地方。 最先回来并宣布找到啤酒桶的是Sroan。他最巧妙地安排了自己的路线,他从A村到达Z村,沿途获得了所有线索,却没有重复走进任何一个村子。而其余的人则一直在走弯路。
上图是11个村子的分布图,村子与村子之间只有惟一的一条道路。
Sroan是怎么走的?
几乎每一本趣题集都收入这样一个木工问题,它要求将圆台面变成两个中间带孔的椭圆形凳面,如图所示。要求锯出的块数越少越好。
一般趣题书上给出的答案是要锯成八块。锯圆台面的方法如插图右下角上图,两个凳面的做法可以参照下图。
按照我们最近发现的巧妙办法,在采用中国的太极图之后,这道题目只要把圆台面锯成六块就行了。
这里提出的问题,形式上是颠倒过来了。要求你把两个椭圆形的凳面各自锯成三部分,并将锯下的六块木板拼出一个没有洞的圆台面。
化圆为卵
这个谜题的目标就是把图中左边的大圆桌面分成若干块,使得这几块可以重新拼成右边的两个中间带空缺的椭圆形凳子。最少分成多少块就可以完成这个目标?
John Jackson在1821年提供了这个谜题,并提供了他自己的解决方案,即将这个圆分成八块。
八年后,Sam Loyd在1901年证明了只需要分成六块即可解决此问题。
最近,在一个多世纪后的2004年,正当人们大多数认为这个谜题已经被Sam Loyd画上圆满的句号时,Serhiy Grabarchuk给出了一个令人震惊的答案,不同于以往所有的答案,这个答案只需要分成五块即可解决此谜题。
你能找出这三种答案吗?