取一枚较长的缝衣针或者是大头针,截掉两端,留下中间粗细均匀的20毫米长的一段。
再取一张白纸,在上面画许多距离为40毫米的平行线,并在纸下面垫一层柔软的东西,防止针的反弹。
然后把针拿到某一个高度,再让它自由落到纸上,这时,针和纸上的平行线只可能产生两种情况:相交(包括针的一端正好落到一根线上),或者不相交。
重复这个动作把每一次相交和不相交的情况记录下来,投掷的次数越多越好,最后把总的次数(相交和不相交的次数之和)除以相交的次数,将得到圆周率\( \pi \)的近似值。投掷次数越多,得到的\( \pi \)值越精确。
为什么会这样呢?
提示:
1)虽然是概率,但毕竟是圆周率,肯定跟圆有关系的。
2)两个数字也是突破口。
3)真人真事:瑞士天文学家服尔夫投掷了5000次,得到\( \pi =3.159 \)
4)理论相交次数与长度成正比,而形状没有关系
数学天地题库提供各类数学题大全及答案,包含小学奥数、中学数学、高等数学、趣味数学、趣味几何等各种数学题及答案。数学天地帮助大家学习解答各类数学题,并培养学习数学的兴趣。
如果你有其他有关数学天地的好题目,欢迎与我们分享 请发布数学天地的智力题