大礼堂里一共有1000个座位,它们的编号分别为1,2,3,…,1000。某次音乐会的售票工作已经完成,经统计,共有800个人拿到了入场券。由于入场券数量小于座位数量,因此大礼堂的座位完全足够。每张入场券上都印有座位号,入场者凭入场券对号入座。在这800个人即将按顺序依次入场时,工作人员发现了一个严重的问题:由于印制错误,入场券上印的座位号只有1到500。我们假设这500个座位号每一个都在入场券中至少出现了一次。但是,由于入场券一共有800张,因而这800个人中有一些人的入场券上印有相同的座位号。这样,入场时必将发生很多次座位的争执。我们假定,当一个人入场后发现他该坐的位置上已经有了人时,这两个人将发生一次争执,争执的结果总是这个人不能夺回座位;此时该人继续寻找下一个座位号并可能再次发生争执,直到找到一个空位为止。是否不管这些观众以什么样的顺序入场,座位争执的总次数都是一样的。
最新数学天地题库提供各类数学题大全及答案,包含小学奥数、中学数学、高等数学、趣味数学、趣味几何等各种数学题及答案。数学天地帮助大家学习解答各类数学题,并培养学习数学的兴趣。
如果你有其他有关数学天地的好题目,欢迎与我们分享 请发布数学天地的智力题