一個年邁的大富翁著手進行遺產分配,特地把3個兒子和公證人叫到身旁。他說他把遺產分為兩份(一大份一小份),而且他寫完並保存好了他的遺囑,但去世后才會公開。他說遺囑里寫了一個介於1~1000之間的隨機的正整數P,要求三個兒子依次寫一個整數且不能修改,誰的數字離這個正整數P最近,誰就獲得他大份的遺產,其他二人平分小份(如果存在一樣近的情況,則三人平分小份,大份捐給慈善機構)。大富翁不喜歡大兒子卻喜歡小兒子,所以他額外要求由大兒子甲先寫一個數字A並公開,然後二兒子乙寫一個數字B並公開,三兒子丙最後寫一個數字C並公開。
請問如果你是甲,由於大富翁偏心的規則,表面上似乎你拿到大份遺產的概率是三人中最低,但是你還是要爭一爭,那麼你提出什麼數字A,才能最大概率的拿到大份遺產?
假設:
大富翁的數字P完全隨機,不存在喜好偏差,且ABC三個數不出來,P不公開;
甲有足夠的思考時間,乙在知道A的情況下有足夠的思考時間,同樣丙在知道A和B後有足夠的思考時間;
大兒子二兒子三兒子的智商差不多,且都很聰明和貪婪,相互之間不會合作;
不存在任何公證人弄虛作假或提前查看遺囑的情況。
(另外由於1~1000是對稱的,不妨設A≤500)
綠豆先生被委託處理一件財產的分配案件...一個有婚外史的富豪
那個富豪在遺囑中說.............................
他給他大兒子1根金條.加上剩下的1/7.給第二個兒子2根金條加上剩下的1/7....如此類推.....
問題是這個富豪有很嚴重的婚外史.....公開的兒子有5個...但是又有一個的人自稱是「富豪兒子」參加遺產分配...但是金條不可以分割
問:到底那個自稱是「富豪兒子」是否真實?