考虑由有限个小球相连组成的网格,每个球之间都用!细线相连。现将球染成黑色或白色,如果与每个白球相连的黑球数至少与和它相连的白球一样多,或与每个黑球相连的白球数至少与和它相连的黑球数一样多,我们就称这个网络为“集成”的。例如下图所示的就是同一个网络的两个不同种类。按定义左边的网络不是集成的,因为球a有两个白球(c,d)与其相连,而只有一个黑球(b与其相连。而右边的网络是集成的。
问:给定任一个网络,是否一定可以通过将小球染色而使之成为集成的?
【Ansley的假期Ⅴ】
Ansley在英格兰结识了一位叫做Edward的男孩。他最近Edward在学趣味数学。便给Ansley出了一道题:
如果
562+981=4;
662+294=3;
382×521=0;
267×850=3;
698÷363=4;
287÷364=2;
那么968÷369=?
聪明的Ansley思考片刻,便自信地在题板上写上了答案。
请问,你知道968÷369得数应该是多少吗?
小顾是个数学爱好者,一天他和他的朋友们吃饭时,小顾说:“我来给你们变个魔术吧!你们随便在10以内找两个整数,按顺序写在纸上。然后写下这两个数之和作为第三个数,然后再写下第二个数和第三个数之和作为第四个数。以此类推,之后的每个数都是其前面两个数之和,例如:2,4,6,10,16....。你们可以一直写下去。然后,你们在第十个数以后随便选一个数字告诉我,我就可以说出他的下一个数是多少。”小顾的朋友们按他所说写了一串数,然后在第十个以后挑了一个数是788并告诉了小顾。小顾掐指一算,只用了三秒钟就给出了下一个数。请问小顾的答案是多少?
中考趣事1-体育:
小龙(♂)和小嫣(♀)是两位初三的学生,一天放学,两人一起到200米一圈的操场上练习跑步,小龙要跑1000米,小嫣要跑800米,两人同时同向出发,为了能共同跑完各自的距离,小龙始终保持200米/分的速度,小嫣始终保持160米/分的速度。小嫣跑步时始终沿一个方向一圈一圈的跑,而小龙每跑完一圈后就转身再反方向跑一圈,如此往复,那么在跑步的过程中(不算头尾)两人会相遇多少次呢?其中有几次是面对面相遇呢?
跟踪敌国特工科尔半年的拉姆失去了耐心,他决定以非法持枪罪拘捕科尔。
拉姆紧紧跟上几步,准备在下一个行人稀少的街头拘捕科尔。他右手握住手枪的枪柄,左手摸了摸口袋里的手铐,深深吸了一口气。科尔开始过街,他从侧面绕了过去。可是,一辆公共汽车忽然加速疾驰过来,拉姆连忙向后让,就在这一瞬间,科尔穿过大街,消失在人群中。
拉姆飞快地跑过去,他抬头四处张望,可哪还有科尔的影子?
只见迎面走来一个4 人一排的乐队,大约只有30人,可是最后还有一个乐手没有排进队伍里。乐队指挥看到拉姆在注意乐队,似乎有些紧张,他指挥乐队排成2 人一排或3 人一排的队伍,却依然有一个人不能排进去。拉姆忍不住高声喊道:“你让他们排成5 人一排啊!”果然,这样乐手就刚好排下了。
拉姆继续搜索科尔的踪迹。他在街角找到了科尔的衣服,而人却不知去向。街角的卖报人恍惚记得那个人跟着乐队走掉了。根据卖报人的说法,乐队走来的时候最后面是没有多出一个人的。
拉姆计算了一下,不由得连呼上当,原来科尔混进乐队逃跑了!现在,只剩下写报告追查乐队一条路了。
你知道这支乐队加上科尔以后究竟有多少人吗?