有六個砝碼,它們的重量分別是 1 克、 2 克、 3 克、 4 克、 5 克、 6 克。每個砝碼上都標有這個砝碼的重量,但由於生產過程中的疏忽,重量有可能被標錯了。請你用天平稱兩次,來檢驗這些砝碼所標克數是否完全正確。
(實際克數和所標克數都是 1 、 2 、 3 、 4 、 5 、 6 ,「標錯」就是指它們的對應關係是錯的。稱砝碼的目的只是檢驗所標克數的正確性,如果不正確,不用找出問題出在哪些砝碼上。)
小明是一個對數學頗有研究的有天賦學生,有一天他對同學提了一個問題,說:「你們用0、1、2、3、4、5、6、7、8、9這十個數組成兩個數,不可重複,然後加起來,再把這個和數擦去隨便一位數,不要給我看那兩個數,我就知道你們擦的數字是多少。例如:123456+7890=131346,擦去一位,即13()346。」
於是,小明的同學經過一番計算得出58()36。小明很快得出這個數。
問:小明是怎樣得出這個數?
觀察下列表達式:
有非負整數N,且
(n=1~3,即n=1,n=2,n=3的簡寫)
n=1~2,i=N; n=3,i=i+1;
n=4~5,i=i; n=6,i=i-1; n=7,i=i-1;
n=8~10,i=i; n=11,i=i+1; n=12,i=i+1; n=13,i=i+1;
n=14~17,i=i; n=18,i=i-1; n=19,i=i-1; n=20,i=i-1; n=21,i=i-1;
n=22~26,i=i;...............以此類推
求:i的表達式(用N,n表示)
開放題數學天地題庫提供各類數學題大全及答案,包含小學奧數、中學數學、高等數學、趣味數學、趣味幾何等各種數學題及答案。數學天地幫助大家學習解答各類數學題,並培養學習數學的興趣。
如果你有其他有關數學天地的好題目,歡迎與我們分享 請發布數學天地的智力題