本题为求抛硬币连续出现同一面的概率问题。
一枚硬币有两面:“H面”和“T面”,设抛硬币出现“H面”和“T面”的概率各为50%。
抛10次硬币,求至少连续2次出现“H面”的概率;求正好连续2次出现“H面”的概率?
抛n次硬币,求至少连续k次出现“H面”的概率;求正好连续k次出现“H面”的概率?
如果设抛硬币出现“H面”的概率为p,出现“T面”的概率为1-p。k<=n
抛n次硬币,求至少连续k次出现“H面”的概率;求正好连续k次出现“H面”的概率?
这题的主要目的是求n重贝努利试验中同一结果连续出现的问题。
有3个人去投宿,一晚30元.
三个人每人掏了10元凑够30元交给了老板.
后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,
服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元.
这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,
还有一元钱去了哪里???
此题在新西兰面试题的时候曾引起巨大反响.
有谁知道答案呢?
有一根不均匀的绳子,烧完正好需要 1 个小时。如何用这根绳子测出半个小时的时间呢?答案很巧妙:把这根绳子的两头同时点燃,绳子烧完时正好就过了半个小时。更妙的是下面这个加强版:如何用两根这样的绳子来计时 45 分钟?答案是,把其中一根绳子的两头都点燃,同时点燃另一根绳子的其中一头;待到前一根绳子烧完之后,再把第二根绳子的另一头也点燃,于是便能测出 30 + 15 = 45 分钟了。
一个有趣的问题自然而然地产生了:假如这样的绳子足够多,哪些时间能够用烧绳子的方法测出来呢?