下面这道题是答案是什么?
如图,对于任意四边形(这里只证凸四边形)ABCD,E是边BC上的任意一点。连接AE、DE。现已知点F、G、H分别为△ABE、△ADE、△CDE的重心(即三边中线的交点),构建△FGH,求证:四边形ABCD的面积是△FGH的九倍。
假定P, Q, R是△ABC的三边AB、BC、CA上的三点,满足RA+AP=PB+BQ=QC+CR=1/3,证明: PQ+QR+RP大于等于1/2
已知一图形A能让一形状固定的长方形在其中围绕某一定点旋转90度(长方形不可在旋转过程有任意部分在图形A外),则满足题意的图形A面积最小是多少?
求助,本人中学生一枚。被同学的问题难到了,如果可以用初中的知识解出来最好。谢谢谢谢
2003年IMO中国国家集训队选拔考试试题
在锐角△ABC中,AD是∠A的内角平分线,点D在边BC上,过点D分别作DE⊥AC、DF⊥AB,垂足分别为E、F,连结BE、CF,它们相交于点H,△AFH的外接圆交BE于点G。求证:以线段BG、GE、BF组成的三角形是直角三角形。
设∠XOY=90°,P为∠XOY内的一点,且OP=1,∠XOP=30°,过点P任意作一条直线分别交射线OX、OY于点M、N。求OM+ON-MN的最大值。
设⊙O的内接凸四边形ABCD的两条对角线AC、BD的交点为P,过P、B两点的⊙O1与过P、A两点的⊙O2相交于两点P、Q,且⊙O1、⊙O2分别与⊙O相交于另一点E、F。求证:直线PQ、CE、DF共点或者互相平行
求助趣味几何题库提供各类与几何数学相关的数学题解答以及各类图形题等,趣味几何题目解题思路往往都非常巧妙。
新浪微博 70,000+
移动应用