×
通过社交网站直接登录
×
条@我的评论,查看@我
条新私信,查看私信
条新评论,查看评论
位新粉丝 查看粉丝
数学天地 趣味数学 选择题 计算
于 2015-06-07 22:27提供
(47)

【全城皆知】
在一座城市居住着60万居民。一天,一位居民从其他城市听来一条奇闻。在半小时之内,这位居民便把这条奇闻讲给3个人听。听到奇闻的人在半小时之内又将这条奇闻各自传给了3个人。到此时为止,全市已有13人知道了这条奇闻了。
但是,这条奇闻的传播并没有就此结束,而是按照上面传播方式继续传播,那么大约经过多少小时全城60万居民都知道了这条奇闻?

标签: 全城
答案:
解析:
30
收藏
数学天地 趣味数学 选择题 计算
感谢 匿名网友 于 2014-07-29 14:40:48 提供
(21)

“平等”输船公司,一向以航运时间准确而闻名。每天,在格林威治时间的正午,由拉各斯向纽约出航一只定期船。同一个时刻,也由纽约向拉各斯出航一只输船。不管从哪个方向出发,到达目的地的时间,大约都是七天。而且,在该公司的运输船出发的那一刻(不管由纽约、或者拉各斯)也正是相对一方轮船抵达到港的时间。东行的船与西行的船都是以同一路线通行。如果,我们现在在拉各斯搭船,在抵达纽约前,会遇见几艘同船公司的轮船?

答案:
解析:
10
收藏
数学天地 趣味数学 选择题 计算
感谢 匿名网友 于 2013-07-20 13:48:42 提供 来源:原创
(41)

国际象棋的棋盘上一共有多少个矩形(含长方形和正方形)。

答案:
解析:
10
收藏
数学天地 趣味数学 选择题 计算
于 2011-12-17 10:58提供
(51)

一次学生代表大会有n所学校参加。因会场大小限制,要求每所学校人数不多于39个。最终来了1990人。

会场一排有199座位,同一个学校的学生总是坐在同一排。

现在由你来安排会场,但是你不知道每个学校具体多少人。请问,至少需要多少排,才能保证所有学生都坐得下。

标签: 学校 会场 学生
答案:
解析:
18
收藏
数学天地 趣味数学 选择题 计算
于 2011-11-25 15:00提供
(45)

阿莫斯、伯特、克莱姆、德克四人刚刚在一家餐馆吃完午餐,正付帐。
1、这四人每人身上所带的硬币总和各为1美元,都是银币,而且枚数相等。
2、25美分的硬币,阿莫斯有三枚,伯特有两枚,克莱姆有一枚,德克一枚也没有。
3、四人要付的数额相同。其中三人能如数付清,不必找零,但另一个却需要找零。
请问:谁需要找零。

标签: 硬币 莫斯
答案:
解析:
23
收藏
数学天地 趣味数学 选择题 计算
于 2013-01-01 07:00提供
(57)

古时候一位妇女养了好多只鸭,她和邻居说:“我家一只公鸭子5文钱,一只母鸭子3文钱,小鸭子1文钱3只。”

老汉听说此事,觉得满划算就想用100文钱买100只鸭子,但希望在不计小鸭数量的情况下,母鸭子的数量要比公鸭子的数量多,并且多出来的数属于最大值。妇女答应了老汉的要求。她给老汉11只母鸭子,81只小鸭子,8只公鸭子,老汉很满意的把鸭子赶回了家。吃完晚饭,老汉觉得无聊就在院子里逗起鸭子来。刚刚从城里回来的儿子一推院门,被眼前的景象震住了,他定了定神问道:“爹,你怎么弄这么多只鸭子啊?”

老汉笑呵呵的把事情经过和儿子讲了一遍,经常做买卖的儿子听完爹这一席话之后,埋怨他说:“你怎么这么糊涂啊,她给你的母鸭子根本不是数量的最大值。”老汉听完问其原因,儿子语重心长的讲了一遍。

第二天,老汉找到妇女理论,两个人理论了半天也没得出一个满意的结果,后来两人对质到公堂。妇女说:“大老爷,这个案子还是由你来决断好了,我只听你的。”

县官把问题问清楚之后,对妇女说:“你给老汉的母鸭子确实不是最大值,你还是马上按老汉的意愿从新分配鸭子好了。”

这到底是怎么一回事,你知道原因吗?老汉要买多少只公鸭子?

标签: 鸭子 老汉 妇女
答案:
解析:
9
收藏
数学天地 趣味数学 选择题 计算
于 2013-03-09 19:34提供
(52)

  大家对德国大数学家高斯小时候的一个故事可能很熟悉了。
  传说他在十岁的时候,老师出了一个题目:1+2+3+……+99+10O的和是多少?
  老师刚把题目说完,小高斯就算出了答案:这100个数的和是5050。
  原来,小高斯是这样算的:依次把这100个数的头和尾都加起来,即1+100,2+99,3+98,……,50+51,共50对,每对都是101,总和就是101×50=5050。
  现在请你算一道题:从1到1000000这100万个数的数字之和是多少?
  注意:这里说的“100万个数的数字之和”,不是“这100万个数之和”。例如,1、2、3、4、5、6、7、8、9、10、11、12这12个数的数字之和就是1+2+3+4+5+6+7+8+9+1+0+1+1+1+2=51。
  请你先仔细想想小高斯用的方法,会对你算这道题有启发。

标签: 高斯 之和 个数
答案:
解析:
20
收藏
数学天地 趣味数学 选择题 计算
于 2013-03-09 20:23提供
(61)

    跟踪敌国特工科尔半年的拉姆失去了耐心,他决定以非法持枪罪拘捕科尔。
    拉姆紧紧跟上几步,准备在下一个行人稀少的街头拘捕科尔。他右手握住手枪的枪柄,左手摸了摸口袋里的手铐,深深吸了一口气。科尔开始过街,他从侧面绕了过去。可是,一辆公共汽车忽然加速疾驰过来,拉姆连忙向后让,就在这一瞬间,科尔穿过大街,消失在人群中。
    拉姆飞快地跑过去,他抬头四处张望,可哪还有科尔的影子?
    只见迎面走来一个4 人一排的乐队,大约只有30人,可是最后还有一个乐手没有排进队伍里。乐队指挥看到拉姆在注意乐队,似乎有些紧张,他指挥乐队排成2 人一排或3 人一排的队伍,却依然有一个人不能排进去。拉姆忍不住高声喊道:“你让他们排成5 人一排啊!”果然,这样乐手就刚好排下了。
    拉姆继续搜索科尔的踪迹。他在街角找到了科尔的衣服,而人却不知去向。街角的卖报人恍惚记得那个人跟着乐队走掉了。根据卖报人的说法,乐队走来的时候最后面是没有多出一个人的。
    拉姆计算了一下,不由得连呼上当,原来科尔混进乐队逃跑了!现在,只剩下写报告追查乐队一条路了。
    你知道这支乐队加上科尔以后究竟有多少人吗?

标签: 科尔 乐队
答案:
解析:
18
收藏
数学天地 趣味数学 选择题 计算
于 2012-06-23 12:58提供
(66)

这是由27个正方体骰子组成的,问图中有多少看不到的点?


标签: 骰子 正方体
该题最近被收录于题集 水番木容
答案:
解析:
22
收藏
数学天地 趣味数学 选择题 计算
于 2012-01-30 11:00提供
(31)

有一个以一首关于"老爷爷的古钟"的歌谣流传的传说。说到"这座钟实在太高,无法放上搁板,就在地板上放了九十年。"这座钟有一个致命的缺陷,就是当分针越过时针之际,就会立刻停止摆动。随着岁月的流逝,这位老先生的神经越来越脆弱。有一天,当分针与时针又一次重叠时,钟停了下来,老先生再也受不了,倒在地上死去了。这正是: 古钟突然停止,再也不会走动,老人就此死去。 有人把这座停摆的古钟照片给我看,钟上坐着一位象征时间的女神。我灵感顿生:既然知道分针与时针重合在一起,那么从图中所示的秒针位置就能准确地说出古钟停摆的时间。

答案:
解析:
6
收藏
数学天地 趣味数学 选择题 计算
于 2011-11-04 10:41提供
(77)

三个质数的倒数之和是1986分之1661,则这三个质数之和为______。

标签: 之和 倒数
该题最近被收录于题集 数学
答案:
解析:
24
收藏
数学天地 趣味数学 选择题 计算
于 2014-07-17 10:08提供
(34)

小楷、小治在玩抓瓜子游戏,这时爸爸走了过来说也要参加,于是他们重新抽签,新的顺序为小楷、小治、爸爸,“既然多了一个人,那瓜子也多一点吧。”爸爸一边说着,一边多倒一些瓜子在桌上,小治和小楷数了数,确定现在桌上有128个瓜子。小治和小楷心想每次玩游戏总会输给爸爸,于是他们互相使眼神,决定联合起来让爸爸输。爸爸发现他们俩眼神有问题,于是便拿起桌上一个瓜子吃了起来,说道:“看你们古灵精怪,刚刚不晓得偷偷讲了什么,这样好了,你们两个可以联手,但是你们一人最多拿2个瓜子,也就是一次只能抓1~2个瓜子,而我还是照你们原本的规则,一次能抓1~3个瓜子。”还是一样抓到最后一个瓜子的人就输了,小楷和小治第一次应该抓多少个瓜子才能合作让爸爸输掉呢?(注意:是小楷和小治合作,这样就变成父子两人对战了。爸爸偷嗑了一个瓜子,所以瓜子总数是127个。)

标签: 智力题
答案:
解析:
11
收藏
数学天地 趣味数学 选择题 计算
于 2011-10-28 15:00提供
(80)

两小孩掷硬币,以正、反面定胜负,输一次交出一粒石子.他们各有数量相等的一堆石子,比赛若干次后,其中一个小孩胜三次,另一个小孩石子多了7个,那么一共掷了多少次硬币?

标签: 石子 小孩 硬币
答案:
解析:
13
收藏
数学天地 趣味数学 选择题 计算
于 2013-03-09 20:27提供
(107)

下面是一个魔法方阵,在这个方阵里任意横向、纵向和斜对角的3个数和都是相等的
请问问号处应该填什么数字


标签: 方阵 问号 数字
最后修改于 2024-08-20 05:12:29
答案:
解析:
19
收藏
数学天地 趣味数学 选择题 计算 原创
于 2016-12-31 23:07提供 来源:33IQ网
(34)
甲乙丙3个人在一起玩一种取硬币的游戏
丙为裁判,游戏时丙从总数为100的硬币中随机取出n枚,不过10≤n≤100。在甲乙面前放着,甲和乙起初都不知道硬币具体数量。
游戏规定:甲和乙轮流每次从中取走1枚,2枚或4枚硬币(不可不取)谁取到了最后一枚硬币就算赢。

假设甲乙两人都十分聪明,而且他们从第一次取硬币的时候就采取自己预定想好的最佳策略。
游戏开始时甲先拿,那么在这场游戏中,甲最终赢得游戏的概率是多少?
著作权归作者所有,转载请联系作者获得授权
答案:
解析:
23
收藏

趣味数学题库提供各类与趣味数学相关的数学题解答以及各类小学趣味数学、趣味数学故事等。

如果你有其他有关趣味数学的好题目,欢迎与我们分享 请发布趣味数学的智力题