一位老師和他的三位學生A、B和C玩猜數字遊戲。老師想了一個三位數(XYZ),他告訴所有人X、Y、Z這三個數都不為0,然後把個位數Z告訴了A,十位數Y告訴了B,百位數X告訴了C,再讓他們輪流問老師問題來找到線索得到這個三位數的值。老師知道A、B、C三個人都很聰明,所以規定他們問的問題只能是是非題,而且每個人問的題目和老師給出的答案三個人都能聽得到。
第一輪開始。
A:這個三位數是質數嗎? 老師:不是。
B:如果用我拿到的數和A拿到的數組成一個兩位數(YZ),這個數是完全平方數嗎? 老師:不是。
C:如果用我拿到的數和B拿到的數組成一個兩位數(XY),這個數是完全平方數嗎? 老師:不是。
第一輪結束后,A說他已經知道這個三位數是多少了,不用再問問題了。
第二輪開始。
B:X、Y、Z這三個數之和是質數嗎?老師:不是。
這時B和C表示不用問了,他們都知道這個三位數是多少了。
問:這個三位數(XYZ)是多少?
有一條蟲子,它的整個身體由 n 節構成,每一節要麼是有瑕疵的 1 ,要麼是沒有瑕疵的 0 ,因而整個蟲子的身體結構就可以用一個 n 位 01 串來表示。你的目標是把整個蟲子變成 000...00 的完美形式。每一次,你可以砍掉蟲子最右側的一節,同時蟲子會在最左側長出新的一節,以保持蟲子的總長度不變。如果你砍掉的是一個 1 ,那麼你可以指定蟲子在最左側長出的是 1 還是 0 ;但如果你砍掉的是一個 0 ,那麼你無法控制蟲子會在最左側長出什麼——它可能會長出 0 ,也可能會長出 1 ,因而你不得不假定,概率總是會和你做對,上天會竭盡全力地阻撓你。我們的問題是:不管蟲子的初始狀態是什麼,你總能保證在有限步之內讓蟲子變成 000...00 嗎?
一個正四邊形ABCD,每個頂點上有一隻螞蟻(可看作動點),4隻螞蟻同時開始移動,A處的螞蟻的運動方向始終向著B處的螞蟻(是螞蟻不是B點),B處的螞蟻的運動方向始終向著C處的螞蟻,C、D處的螞蟻同理,每隻螞蟻的速度大小相同,則A螞蟻與C螞蟻的初始速度方向保持平行,整個過程瞬時速度方向始終保持平行,B螞蟻與D螞蟻同理,那麼他們到底能相遇還是不能相遇?
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家裡?
提示:他可以把香蕉放下往返的走,但是必須保證它每走一米都能有香蕉吃。也可以走到n米時,放下一些香蕉,拿著n根香蕉走回去重新搬50根。