设 S 是平面上包含至少两个点的一个有限点集,其中没有三点在同一条直线上。所谓一个“风车”是指这样一个过程:从经过 S 中单独一点 P 的一条直线 l 开始,以 P 为旋转中心顺时针旋转,直至首次遇到 S 中的另一点,记为点 Q 。接着这条直线以 Q 为新的旋转中心顺时针旋转,直到再次遇到 S 中的某一点,这样的过程无限持续下去。
证明:可以适当选取 S 中的一点 P ,以及过 P 的一条直线 l ,使得由此产生的“风车”将 S 中的每一点都无限多次用作旋转中心。
有3个人去投宿,一晚30元.
三个人每人掏了10元凑够30元交给了老板.
后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,
服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元.
这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,
还有一元钱去了哪里???
此题在新西兰面试题的时候曾引起巨大反响.
有谁知道答案呢?
有一根不均匀的绳子,烧完正好需要 1 个小时。如何用这根绳子测出半个小时的时间呢?答案很巧妙:把这根绳子的两头同时点燃,绳子烧完时正好就过了半个小时。更妙的是下面这个加强版:如何用两根这样的绳子来计时 45 分钟?答案是,把其中一根绳子的两头都点燃,同时点燃另一根绳子的其中一头;待到前一根绳子烧完之后,再把第二根绳子的另一头也点燃,于是便能测出 30 + 15 = 45 分钟了。
一个有趣的问题自然而然地产生了:假如这样的绳子足够多,哪些时间能够用烧绳子的方法测出来呢?
rouby跟mingtke又赌上了,rouby终于赢了一把,这次的赌注还是用百元大钞堆出标准的无缝隙的正方体(不考虑间隙)。不过rouby可比mingtke精明,要求不能折叠、不能破坏人民币,而且要求立方体的边长必须是整数(mm)。百元大钞的标准尺寸是:165*77*0.08mm,大家帮mingtke想想吧,要不他真得破产了。请问mingtke最少需要支付多少人民币?